
BIOSTATISTICS 
TOPIC 7: ANALYSIS OF DIFFERENCES 

II. MULTIPLE COMPARISONS 
 

 
 In Topic 6, we discussed methods for comparing two groups. However, many 
clinical experiments involve more than two treatments. In this topic, we discuss methods 
for comparing g (g > 2) treatment groups, where the treatments are randomly assigned to 
patients. For example, a clinical trial might be interested in comparing the efficacy of 5 
drugs in relation of improvement in bone mineral density. It would seem this problem could 
be solved by performing a t-test on all possible pairs of means. However, this solution 
would be incorrect, since it leads to considerable distortion of a statistical type I error. For 
instance, in the above example, there are 10 possible pairs and if the probability of 
correctly accepting the null hypothesis for each pair comparisons is 1 - 0.05 = 0.95, then 
the probability of correctly accepting the null hypothesis for all 10 tests is (0.95)10 = 0.60, 
if the tests are independent. Thus, a substantial increase in the type I error has occurred. 
 
 
 The appropriate procedure for testing the equality of several means is the analysis 
of variance (ANOVA). However, ANOVA has a wider application than the problem above. 
It is probably the most useful technique in the field of statistical inference. The topic is an 
extensive subject to which numerous books have entirely devoted to the subject because it 
is directly linked to the issues of design of experiments. The problem of design is, of 
course, inseparable from those of analysis and it is worth emphasizing that unless a sensible 
design is employed, it may be very difficult or even impossible to obtain valid conclusions 
from the resulting data. Before studying the ANOVA technique, let us discuss the concept 
of effect and replication.   
 
 
I. THE CONCEPT OF EFFECT AND LINEAR MODEL 
 
(A) GENERAL INTRODUCTION 
 
 Let us start with a simple example: suppose that we have three samples, each with 
three observations, represent identical population distributions, and that there is no 
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variability (that is, no error) within any of the populations. If the mean of each of the 
populations is µ = 40, then our sample results should perhaps look like this: 
  
   

 Sample 1 Sample 2 Sample 3 
   

 40 40 40 
 40 40 40 
 40 40 40 
   

 
 There should be no differences either between or within samples if this is the true 
situation. When this is true and let the observation for each individual i in each group j be 
yij , we could write: 

 
yij = µ  ,  

 
where µ is, of course, a constant (µ = 40). Now suppose that the three samples are given 
different treatments, and that treatments produce effects, but that there is once again no 
variability within a treatment population (again, no error). Our results might look like: 
 
   

 Sample 1 Sample 2 Sample 3 
   

 40 - 2 = 38 40 + 6 = 46 40 - 4 = 36 
 40 - 2 = 38 40 + 6 = 46 40 - 4 = 36 
 40 - 2 = 38 40 + 6 = 46 40 - 4 = 36 
   

 
 Here there are differences between observations in different treatments, but there 
are no differences within a treatment sample. The linear model here is: 
 

yij j= +µ α  

 
where, as can be seen, α1 2= − , α2 6=  and α3 4= − . Note that the sum of treatment effect 
is zero. 
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 In reality, there is always variability in a population, so that there is sampling error. 
The actual data we might obtain would undoubtedly look something like: 
 
   

 Sample 1 Sample 2 Sample 3 
   

 40 - 2 + 5 = 43 40 + 6 - 5 = 41 40 - 4 + 3 = 39 
 40 - 2 + 2 = 40 40 + 6 + 1 = 47 40 - 4 - 2 = 34 
 40 - 2 - 3 = 35 40 + 6 + 8 = 654 40 - 4 + 1 = 37 
   

 Mean 39.3 47.3 36.7 
 
 Overall mean: 41.1  
 
 Here a random error component has been added to the value of µ and the value of 
α j  in the formation of each score. The linear model in this situation is then:  

 
y eij j ij= + +µ α  

 
 Notice that not only do differences exist between observations in different 
treatments, but also between observations in the same treatment.  
 
 If we estimate the effect of treatment 1 by taking  
 

est α1  = x x1 −  = 39.3 - 41.1 = -1.8 
 
it happens that we are almost right, since the data were simulated so that α1  = -2. Likewise, 
our estimate of α2  is in error by 0.2 and our estimate of α3 is error by -0.4.  
 
 This example is to point out that evidence for experimental effects has something to 
do with the differences between the different groups relative to the differences that exist 
within each group. Next, we will turn to the problem of partition the variability among 
observations into two parts: the part that should reflect both experimental effects and 
sampling error, and the part that should reflect sampling error alone. 
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(B) PARTITIONING OF VARIANCES 
 
 We begin by denoting the observation from an individual i belong to sample j be yij , 
the overall mean by y  and the mean for each sample j by yj , then we could write: 

 
  ( ) ( )yyyyyy jjijij −+−=−  

 
 On squaring both sides of this equation we obtain: 
 

 ( ) ( ) ( )[ ]∑∑ −+−=∑ ∑ −
j i

jjij
j i

ij yyyyyy 22  

    = ( )∑ ∑ −
j i

jij yy 2  + ( )∑ ∑ −
j i

j yy 2  - ( )( )∑ ∑ −−
j i

jjij yyyy2  

 
 The expression is a little bit complicated. Now, let us analyse one by one: first, 

notice that the term ( )( )∑ ∑ −−
j i

jjij yyyy2  is first to be summed over i and then over j. But 

( )yy j −  is the same for all i in the j sample and the sum of ( )jij yy −  is zero, therefore: 

 

  ( )( )∑ ∑ −−
j i

jjij yyyy2  = 2 ( )∑ −
j

j yy ( )∑ −
i

jij yy   = 0 

 

 Second, the term ( )∑ ∑ −
j i

j yy 2 is essentially the deviation between each sample 

mean and overall mean. Again, the sum is over all i and then over all j. If the sample size of 

each sample (group) is nj , then the sum ( )∑ −
=

jn

i
j yy

1

2  i.e. over nj  times. In other words: 

 

  ( ) ( )∑ ∑ ∑ −=−
j i j

jjj yynyy 22  

 

 Finally, the term ( )∑ ∑ −
j i

jij yy 2  could be obtained as the differences between 

( )∑ ∑ −
j i

ij yy 2  and ( )∑ ∑ −
j i

j yy 2 .  
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 That is, the total sum squares (SS) can be written as: 
 

  ( ) ( ) ( )∑ −∑∑ +−=∑∑ −
j

jj
j i

jij
j i

ij yynyyyy 222  

  Toal SS   =  Within SS         +  Between SS 
 
 
 
 
II. WHAT IS  REPLICATION ? 
 
 Consider the following experiment to compare two treatments applied to only two 
patients. Suppose that treatment A1 gives a response of 180 units and treatment B1 gives 
168 units. Then we would suspect that treatment A was better than treatment B. But, we 
have no idea if the difference of (180 - 168) = 12 is due to treatment effect or due to the 
natural variability. Even if there is no treatment effect, it is highly unlikely that the results 
will be exactly the same.  
 
 Now suppose that the experiment is repeated on a next two patients and that the 
following results are obtained. A2 = 176 and B2 = 171. Then an estimate of the treatment 
effect is obviously (A1 + A2 - B1 - B2) / 2 = 8.5. 
 
 But now, we have also two estimates of residual variation, namely, (A1-A2) and 
(B1-B2). These can be combined in two ways to give: 
 
   (A1 - A2 + B1 - B2) = 0.5 
   (A1 - A2 - B1 + B2) = 3.5 
 
 The treatment effect (8.5) is much larger than the other two comparisons (0.5 and 
3.5) and this is a definite indication that treatment A is better than treatment B. Since there 
are only two groups, we can use the t-test (topic 6); it can be shown that the estimate of the 
residual standard deviation is given by:  
 

   ( ) ( )
4

2121 22 BBAAs −+−
=  = 2.5 
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 and the standard error of the estimate treatment effect (difference) is: 
 

   ( )
2
1

2
1

+= sDiffSE  = 2.5 

 Thus the value of the standardised distance is: 
 
   t = 8.5 / 2.5 = 3.4  
 
which is actually less than its expected value (t = 4.3 with 2 df and alpha=5%). In other 
words, the result is not statistically significant. It would be advisable to make more 
observations (or replications) in order to improve the power of the test. The process of 
design and analysis of a controlled experiment in which several replications are made in 
one treatment will be considered in the context of analysis of variance as follows: 
 
 
III. SINGLE FACTOR (ONE-WAY) ANALYSIS OF VARIANCE 
 
 It is perhaps best to start this subject with a concrete example as follows: 
 
 Example 1: The weight gain in pounds over three weeks of 35 pigs from five 

different treatments are given in the following table: 
 
   

  Treatment  
  1 2 3 4 5 
   
  23 29 38 30 31 
  27 25 31 27 33 
  26 33 28 28 31 
  19 36 35 22 28 
  30 32 33 33 30 
  30 28 36 34 24 
  27 30 35 34 29 
  25 31 37 32 30 
   
 Number of pigs: 8 8 8 8 8 
 Sum: 207 244 273 240 236 
 Mean: 28.75 30.5 34.13 30 29.5 
 Variance 13.26 11.14 10.98 17.43 7.14 
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 It was interested to know whether the weight gains were different between treatment 

groups? 
  
 
2.1. PARTITION OF VARIATIONS 
 
 Let us denote the weight gain for an ith  treatment in a jth pig be xij , that is, i = 

1,2,..,5 and j = 1,2,...,35. Then, the overall mean x is estimated by: 
 

  x xij
j

n

i

i

=
==

∑∑
11

5

 = 23 27 29 30
40

+ + + +...   

       = 1200
40

  

                          = 30. 
 
 Furthermore, the mean of each treatment can be denoted by xi ; that is x1 28 75= . , 

x2 30 5= . , . . ., x5 29 5= . .  
 
 It could be shown mathematically that the total variation of the data is equal to the 

sum of variation between treatment groups and variation within treatment groups. In 
other words: 

 
    ( ) ( )iijiij xxxxxx −+−=−  

 
 The LHS represents the total deviation; the first term in the RHS represents the 

deviation of treatment mean from the overall mean and the second term in the RHS 
represents the deviation around treatment mean. If we square both sides this equation, 
we have: 

 

    ( ) ( ) ( )∑∑ −+∑ −=∑ ∑ −
i j

iij
i

ii
i j

ij xxxxnxx 222  

 The first term (LHS) is called total sum of squares, the second term is called sum of 
squares due to differences between treatments and the third term is called sum of 
squares due to errors (within treatment). We denote the three terms by the following 
abbreviations: 
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    SSTO = SSTR + SSE  
 
 SSE is a measure of the random variation of the observations around the respective 

treatment means. The less variation within treatment, the smaller SSE. If SSE = 0, all 
observations for a treatment are the same. On the other hand, SSTR measures the 
extent of differences between treatments, based on the deviations of the treatment 
means xi  around the overall mean x .  

 
2.2. COMPUTATIONS 
 

 Obviously total variation can be calculated as xij
ij

2∑∑ , however, we notice that this 

will be a very large number for a large number of observations. We could subtract 

this by a correction factor (CF) which is defined as ( )21 totalgrand
N

, i.e.  

 

   C.F = 
2

1








∑∑
i j

ijx
N

 

    = ( )
40

1200 2
 

    = 36,000. 
 
 Then total sum of squares is: 

   SSTO  = x CFij
ji

2∑∑ −     [1] 

    = ( )2222 3029...2723 ++++  - 36000 

    = 696. 
 
 The sum of squares due to differences between treatments is: 
 

   SSTR   = x
n

CFi

ii

2

∑ −      [2] 

    = 207
8

244
8

273
8

240
8

236
8

2 2 2 2 2

+ + + +  - 36000 

or equivalently:  = ( ) ( ) ( )222 305.298...305.3083075.288 −++−+−  
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    = 276.25. 
 
 The sum of squares due to differences within treatment is: 
 

   SSE = x x
nij

ji

i

ii

2
2

∑∑ ∑−     [3] 

    = SSTO - SSTR 
    = 696 - 276.25  
    = 419.75. 
 
2.3. DEGREES OF FREEDOM 
 
 Corresponding to the decomposition of the total sum of squares, we can also obtain 
a breakdown of the associated degrees of freedom (df). But what is "degree of freedom" ? 
Well, a rather strict interpretation is that the number of df associated with a chi square 
variable is the number of independent (standard normal) random variables that 
conceptually go into the make-up of the variable. For a more intuitive understanding of the 
term, let us compare two ways of estimating the variance of a population by taking a 
sample of size n:  first when we know the value of the population mean µ, and second when 
we do not know µ.  
 

 In the first instance, we estimate the variance by ( )∑ −
=

n

i
i nx

1

2 /µ ; here, the n terms 

xi − µ  are all independent, hence each makes an independent contribution to the estimation 
of the variance. Thus we do not lose any degrees of freedom in estimating the variance.  
 In the second instance, we do not µ, we must replace it by the sample mean x  and 

estimate the variance by ( )∑ −
=

n

i
i nxx

1

2 / . Now recall that ( )∑ −
=

n

i
i xx

1
 = 0. This means that the 

n terms x xi −  are not independent, because as soon as we know n-1 of the terms, the value 
of the remaining term is fixed. This fact, resulting from our use of an estimate of µ  (which 
is x ) rather than µ  itself, causes us to lose one degree of freedom in estimating the 
variance. Ultimately, we will see that, in the general problem of estimation, we lose one df 
for each parameter that is replaced by a sample estimate. 
 
 Now returning to our case: 
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 (a) For SSTO, the calculation was based on 40 observations, but there is one 

constraint on the deviation  x xij −∑∑  = 0, hence it is associated with N-1 = 39 df . 

 (b) For SSTR, there are 5 treatment groups, but there is one constraint ( )∑ −
i

ii xxn  = 

0, hence it has 4 def. 
 

 (c) For SSE, we can see that expression ( )∑ −
=

in

j
iij xx

1

2  which is equivalent to a total 

sum of squares considering only the ith treatment factor. Hence, there are ni −1 df 
associated with this sum of squares. So, the number of df for this term in our example 
is (8-1) + (8-1) + (8-1) + (8-1) + (8-1) = 40 - 5 = 35 df. The SSE is very important in 
the analysis of multiple groups. You can think of it as an average of variances of all 
treatment groups. Hence a comparison of between groups must be done in relation to 
this SSE, which we will touch to this statistic in the next discussion. 

 
 
2.4. SET-UP AN ANOVA TABLE 
 
 We can summarise the above computation in an analysis of variance table, 
commonly known as ANOVA table, as follows: 
 
   
 Source DF Sum of  Mean of F-test 
   squares square 
   
 Between treatments 4 276.25 69.06 5.76 
 Within treatment (residuals) 35 419.75 12.00 
 Total 39 696.00   
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2.5. THE F TEST 
 
 We still have not addressed the question of whether there was any differences 
between 5 means. The statistical solution to this question is called the F test, named after 
the eminent British statistician Ronald A. Fisher. The statistic was already defined in Topic 
5, which stated that: if U and V are independently distributed chi-square variables with m 

and n degrees of freedom (df), respectively, then the ratio W U m
V n

=
/
/

 is distributed 

according to the F distribution with m and n df. 
 Mathematically, it is: 

    

( )
( )

( )
( )

2
2

2
2

2
1

2
1

2
2
2

2

1

2
22

1
2
1

1

1

2
11

/ˆ
/ˆ

1

1
σσ
σσ

σ

σ
=

−

∑ −

−

∑ −

=

=

n

XX

n

XX

n

i
j

n

i
j

  [4] 

 where $σ1
2 and $σ2

2 are the unbiased estimates of the population variances for 
population 1 and 2, respectively. Thus, [6] is a function of σ1

2 and σ2
2 (the unknown 

variances). The distribution however holds regardless of the true values of σ1
2 and σ2

2 . 
Therefore, under the unique condition (and only such condition) that σ1

2 =σ2
2 , [5] can be 

written as: 

     F =
$

$

σ
σ

1
2

2
2    [5] 

 
 Result [5] is often used to test for the equality of two variances.  
 
 
 Now returning to our case. If there is no difference between 5 groups, then one 
would expected that the between-treatment mean square to be small relative to within-
treatment mean square. On the other hand, if there is difference between treatment groups, 
the between-treatment mean square should be greater than the within-treatment mean 
square. We used the word "relative" to talk about differences here. In other words, instead 
of subtracting one mean square from another, we take the ratio of mean square. And, of 
course, the ratio of mean square has an F distribution which conveniently allows us to make 
inference whether a ratio is significantly different from 1 (no difference). 
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 In our example, the mean square due to treatment differences is 69.06 (with 6 df) 
and the mean square due to within treatment differences is 12.00 (df = 35). Hence the ratio 
which we denoted as F is:  

F =
69 06

12

.  = 5.76, with df = 6, 35. 

 
 This value is traditionally presented in the last column of the ANOVA Table. Is the 
ratio significantly different from 1 ? To answer this question, we need to compare this 
value with the expected value in the F distribution in the appendix. We see that with 6 df in 
the numerator and 35 (we take 50) df in the denominator and with p=0.01 (1% significance 
level), the expected F ratio is 3.19. Now, the observed ratio of 5.76 is much larger than this 
expected ratio, we conclude that there was significant difference between groups.  
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2.5  ONE-WAY ANALYSIS OF VARIANCE FROM SUMMARY DATA 
 
 The above analysis is based on the assumption that individual data are available for 

each subject. However, suppose that only summarised data are available in the 
following format: 

 
   
 Group Sample size Mean Variance  
   
 1 n1 x1 s1

2   
 2 n2  x2  s2

2  
 . 
 . 
 .  
 g ng  xg  sg

2  

 Total N X  S 2  
   
  

 First, between-group sum of squares:  SSTR = ( )∑ −
=

g

i
ii Xxn

1

2 ,  with (g-1) df 

 second, the within-group sum of squares: SSE = ( )∑ −
=

g

i
ii sn

1

21 ,  with (N-g) df. 

 then the ANOVA table can be set up as follows: 
 
   
 Source DF Sum of  
    squares 
   

 Between groups g - 1  ( )∑ −
=

g

i
ii Xxn

1

2   

 Within treatment (residuals) N - g  ( )∑ −
=

g

i
ii sn

1

21  

 Total N - 1 ( ) 21 SN −    
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III. ANALYSES AND HYPOTHESIS TESTING 
 
 Remember we conclude that there is at least one difference between treatment 
groups in term of weight gains. There are 5 groups, the number of simple two-group 
comparisons is C2

5 10=   (in fact, there are many more possible comparisons, can you 
think of?), then the question is which group is different to which group ? The procedure of 
searching for pairwise difference is called multiple comparisons. There are several 
procedures for multiple comparisons and they do not necessarily yield the same answer, the 
crucial issue is we must carefully evaluate them in terms of our aims.  
 
 
3.1 LINEAR CONTRASTS  
 
 This finding of significance signifies the beginning of a careful statistical 

examination of the results, not the end of the analysis. The search for specific 
treatment differences involves an application of the method of multiple comparisons. 

The differences between x x1 2− , x x2 4− , x x x1 2
42

+
− , x x x x1 2 3 4

2 2
+

−
+ , etc. are only 

four of literally infinite many comparisons possible among the treatment means.  
 
 Each of the comparison can be expressed as a general contrast  
 

   C c xi i
i

= ∑  

 

 where c1, c2, . . ., cn are numerical constants so that ci
i

=∑ 0. 

 Thus, for a comparison between x x1 2− , we could have c1 1= , c2 1= − , 
c c c3 4 5 0= = = . In x x2 4− , we could have c2 1= , c4 1= −  and c c c1 3 5 0= = = . For the 

comparison x x x1 2
42

+
−   we can set c c1 2

1
2

= = , c4 1= −  and c c3 5 0= = , and so on.  

 
 It can be shown that the standard error of a general contrast is: 
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    ( ) ∑×=
i i

i
n
cWMSCSE

2
  

 
 where WMS is the within mean square error (in our example WMS = 12.0).  
 
 It follows that the ratio  
 

    ( )Cse
CL =   

 
 is distributed according to the t distribution with N-g degrees of freedom (N total 

observation i.e 40 and g number of treatments i.e. 5) 
 
 
 
3.2 SCHEFFE'S METHOD  
 
 Scheffe (1953) is a standard method for multiple comparisons. In this method, a 

typical contrast C is judged to be statistically significant different from 0 if the 
absolute value of its associated ratio L exceeds S, say, where:  

 
    ( ) α,,11 gNgFgS −−−=  

 
 That is if |L| < S, the contrast is not statistically significant.  
 
 
3.3 TUKEY'S METHOD  
 
 If the investigator's interest resides exclusively in pairwise differences between the 

means, and not in more general comparisons, a criterion proposed by Tukey (1981) is 
preferable to Scheffe's with respect to power and to the lengths of confidence 
intervals. It requires, in theory, equal sample sizes (say, n n n1 2 5= = =...  = n) and is 
based on the distribution of the so-called studentised range, say: 
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    ( ) ( )

n
WMS

xxq ii
gNg

minmax
,

−
=−  

 
 According to Tukey's criterion, the difference between the means of treatment i and j 

is significant if: 
 

    Q
x x

WMS
n

qij
i j

g N g=
−

> −, ,α  

 
 and the 95% CI is: 
 

    ( )
n

WMSqxx gNgji α,, −±−  

 
 where qg N g, ,− α  is the tabulated upper α point of the distribution of the studentised 

range for g groups and estimated variance based on v df and n is the average number 
of observations per treatment groups.  

 
 Example 1 (continued): 
 
 For the data in Example 1, we have:  q(5, 35, 0.05) = 4.07.  

 and the quantity:   WMS
n

=
12
8

 = 1.22. 

 Hence the critical value for comparisons is: 4.07 x 1.22 = 4.96. 
 The five sample means are rearranged in ascending order as follows: 
 
  x1 = 25.87 x5 = 29.5 x4  = 30 x2  = 30.5 x3 = 34.13 
 
 Obviously: x3 - x1 = 8.26 > 4.96; conclusion: significant. 
    x3 - x5 = 4.63 < 4.96; conclusion: no significant; stop. 
    x2  - x1 = 4.63 < 4.96; conclusion: no significant; stop. 
 and so on.         // 
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3.4 STUDENT-NEWMAN-KEULS (SNK) METHOD 
 
 The SNK method provides a modification of the Tukey's method. The test was 

developed by Newman in 1939 and was generated by Keuls in 1952. Operationally, 
although the SNK method also makes use of the Studentised range statistic, different 
critical values are used depending on the number of steps separating the means being 
tested. To illustrate the difference between the two methods, let us consider the data 
in Example 1, in which the value of q(5, 35, 0.05) = 4.07 is fixed for any comparison. 
However, for the SNK test, the value of q is dependent on the "distance" between 
means which are arranged in ascending order.  

 

 The test is defined by:  ( ) ( )

n
WMS

xxq ii minmax −
=  

  
 This value is to compared with a critical value of q(r, N-g) where r is the "distance" 

between the maximum and minimum means; N is total number of observations and g 
is the number of treatment groups, i.e. N-g is the df of the WMS term.   

 
 
 Example 1 (continued): 
 
 The means of five treatments are rearranged into ascending order as follows: 
 
 Mean: x1 = 25.87 x5 =29.5 x4  = 30 x2  = 30.5 x3 = 34.13 
 
 Since the distance between x3 and x1 is 5 steps, therefore, r = 5; the distance between 

x2  and x1 is 4 steps, therefore r = 4, and so on. Based on this procedure we could 
derive the critical value for any pairwise comparison as follows: 

 
   
  r = 2 r = 3 r = 4 r = 5 
   
 q(r, 35) 2.89 3.49 3.85 4.10 

 W = q(r, 30) × 12
8

 3.54 4.27 4.71 5.02 
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 Then we can set up the following comparisons: 
 
 x3 - x1 = 8.26 > 5.02 conclusion: significant; proceed; 
 x3 - x5 = 4.63 < 4.71 conclusion: not significant; stop. 
 
 x2  - x1 = 4.63 < 4.71 conclusion: not significant; stop. 
 x4  - x1 = 4.13 < 4.27 conclusion: not significant; stop. // 
  
 
3.5 DUNCAN'S MULTIPLE RANGE TEST 
 
 Duncan (1955) developed a procedure for obtaining all pairwise comparisons among 

g sample means. Although this procedure makes use of the Studentised range, his 
error rate is neither on an experimentwise basis (as with Tukey's) nor on a per-
comparisons basis. When the sample means have been ranked from lowest to highest, 
the error rate is designed in the following way. In general, if two sample means are r 
steps apart, Duncan defines the protection level as: 

 
     ( ) 11 −− rα  

 
 the probability of falsely rejecting the equality of two population means when the 

sample means are r steps apart is then taken to be: 
 
     ( ) 111 −−− rα  

 
 For α = 0.05, the protection level can be tabulated for various value of r as follows: 
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  Protection Prob of Falsely 
  level rejecting Ho. 
  ( ) 11 −− rα  ( ) 111 −−− rα  
   
 r = 2 0.950 0.050 
 r = 3 0.903 0.097 
 r = 4 0.857 0.143 
 r = 5 0.815 0.185 
 r = 6 0.774 0.226 
 r = 7 0.735 0.265 
   
 
 Because the protection level decreases with increasing r , Duncan's multiple range 

test is very powerful; that is, there is a high probability of declaring difference when 
there is actually a difference between population means. This has been one of the 
reasons for Duncan's test being the most popular among researchers. 

 
 According to Duncan, two population means are significantly different if the absolute 

value of their sample differences exceeds 
 

    ( )
n

WMSgNrqW ×−= ,  

 
 where, as before, n is the number of observations per treatment groups; N is total 

number of observations from g treatment groups; WMS is the within (residual) mean 
square derived from the ANOVA table.  

 
 Example 1 (continued): 
 
 The means of five treatments are rearranged into ascending order as follows: 
 
 Mean: x1 = 25.87 x5 =29.5 x4  = 30 x2  = 30.5 x3 = 34.13 
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 and the value of q(r, N-g) are taken from Table 11 then W can be tabulated as 
follows:: 

 
   
  r = 2 r = 3 r = 4 r = 5 
   
 q(r, 35) 2.89 3.04 3.12 3.20 

 W = q(r, 30) × 12
8

 3.54 3.72 3.82 3.92 

   
 
 Then we can set up the following comparisons: 
 
 x3 - x1 = 8.26 > 3.92 conclusion: significant; proceed; 
 x3 - x5 = 4.63 > 3.82 conclusion: significant; proceed; 
 x3 - x4  = 4.13 > 3.72 conclusion: significant; proceed; 
 x3 - x2  = 3.63 > 3.54 conclusion: significant; proceed; 
 
 x2  - x1 = 4.63 > 3.82 conclusion: significant; proceed; 
 x2  - x5 = 1.00 < 3.72 conclusion: not significant; stop. 
 
 x4  - x1 = 4.13  >  3.72 conclusion: significant; proceed; 
 x4  - x5 = 0.50 < 3.54 conclusion: not significant; stop. // 
  
 
3.6 FISHER'S LEAST SIGNIFICANCE TEST 
 
 The α-level of Fisher's least significance difference (LSD) is valid for a given 

comparison only if the LSD is used for independent (orthogonal) comparisons or for 
preplanned comparisons. However, since many people find Fisher's LSD easy to 
apply and hence use it for making pairwise comparison (particularly those that look 
"interesting") following the completion of an experiment, the test is recommended 
only when the overall F-test is significant.  

 
 The test is a generalised version of the pairwise t-test, where LSD is defined as: 
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 and is compared with the t distribution with N-g df.  
 
 
 Example 1 (continued): 
 
 For the data in Example 1, we have WMS = 12 and each of the sample size per 

treatment are equal to 8, hence:  
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 and with df = 35, we have the critical value for t(35, 0.05/2) = 2.042 (notice that we 
set the a level to be 0.05/2 = 0.025 to have a two-sided hypothesis) 

 
 Hence any pairwise difference of more than (1.73 ×  2.042) = 3.53 is declared to be 

significant at the 5% level (2 tailed). For this criteria, we can see that x3 and x1; x3 
and x5; x3 and x4 ; x3 and x2 ; x2  and x1; and x4  and x1 are significant, whereas there 
is no statistically significant difference between x2  and x5; x4  and x5.  // 

 
 
3.7 SOME COMMENTS 
 
 Certainly, a logical question at this point is which one of these tests should one use? 
Unfortunately, there is no clear-cut answer to this question, and statisticians (like anyone 
else) often disagree over the utility of the various procedures. Carmer and Swanson (1973) 
have conducted Monte Carlo simulation studies of a number of multiple comparison 
procedures, including others not discussed here. They found that the least significance test 
is a very effective test for detecting true differences in means if applied only after the F test 
in the ANOVA is significant at 5% level. They also report a good performance in detecting 
true differences with Duncan's multiple range test. This is not surprising, since these two 
methods are the most powerful of those we have discussed. Duncan's multiple range test is 
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also available in many computer statistical softwares for ANOVA. It should be satisfactory 
for many general applications. 
 
 Because all multiple comparisons are based on the magnitude of difference two 
means, we can get some feel for how conservative one test is relative to another by 
comparing the magnitudes of the differences required for significance to be declared. As 
can be seen from the above example, Scheffe's procedure is very conservative and should 
not be used for pairwise comparisons. 
 
 
3.8 SEVERAL TREATMENTS VS. A CONTROL 
 
 It is sometimes necessary to compare several treatment groups versus a control, but 
not between treatment groups. Dunnett (1964) derived a method for "multiple comparisons 
with a control" which can be summarised as follows: Suppose that we have p groups each 
of whose means is to be compared to the same control mean. Let the subscript 0 represent 
the control group and let ni  (i = 0, 1, 2, . . ., p) denotes the sample size for group i. Dunnett 
showed that each group can be compared to the control mean by using the statistic 
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 where s is the square root of the pooled variance across all groups.  
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 Example 2: The following statistical summary is adapted from data presented by 

Dunnett in 1964. A total of 60 cockerels were assigned at random to receive either no 
treatment (control) or one of the drugs in their diets. These 60 birds were sacrificed at 
either 1, 3 or 7 weeks after the start of treatment, and the fat content of the breast 
muscle was measured; the time of sacrifice had no effect on the response. 
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 Group Sample size Mean S.D Li 
   
 0. Control 15 2.580 0.258  
 1. Stilbesterol 15 2.461 0.409 -0.92 
 2. Low dose acetyl enheptin 15 2.232 0.381 -2.70 
 3. High dose acetyl enheptin 15 2.573 0.348 -0.05 
   
 
 Since the four sample sizes were equal, the overall (pooled) variance can be 

calculated as : s si
2 21

4
= ∑  = 0.125, with 4 x 14 = 56 degrees of freedom. The value 

of Li  should be referred to the critical value table by Dunnett (1955, 1964) for 
assessment of significance.  

 
 If, however, the sample size for each group is NOT equal to the control group, a 

conservative upper bound seems to be  
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 For example, if n0  = 20 and ni = 10, the correct critical value for judging the 
significance of Li  should be no more than 1 + 0.07(1 - (10/20)) = 1.035 times the 
tabulated value.  
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IV. TWO-WAY ANALYSIS OF VARIANCE 
 
 In the above analysis, we were concerned with classification of observation by a 
single criterion (factor) and our primary purpose was to test for the differences between 
levels of the factor. We shall now consider the situation in which the individual 
observations are subject to two criteria of classification. Let us start with a simple 
illustration. Suppose that the means of a certain variable trait for three groups of subjects 
and two treatments are as follows: 
 
   

 Group 1 Group 2 Group 3 
   

 Treatment A 28 33 35 
 Treatment B 28 33 35 
   
 
 For this data, we may denote each value for an ith row and jth column as xij  (i = 1, 2 

and j = 1, 2, 3). The overall mean (denoted by X ) is X  = 32. We can say that the effects 
associated with groups 1, 2 and 3 are 28 - 32 = -4; 33 - 32 = 1 and 35 - 32 = 3, respectively. 
If we denote these effects by α j  (j = 1, 2, 3) then α1 4= − , α2 1=  and α3 3= , and note that 

the columns (groups) of the above table differ from each other, but the rows (treatments) 
within each column show identical values. In fact, each value can be represented by the 
equation: 
 

xij j= +32 α  

 
 Consider now another scenario, where there is no effects associated with the patient 
groups but there are effects associated with treatments. The data may look like:  
  
   

 Group 1 Group 2 Group 3 
   

 Treatment A 34 34 34 
 Treatment B 30 30 30 
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 So, the effect of treatment A is now 34 - 32 = 2 and of treatment B is 30 - 32 = -2. 
Each value fits the equation  
 

xij i= +32 β   

 where β1 2=  and β2 2= − . 
 
 Now suppose that there are both treatment effects and differences between patient 
groups. We may simulate the data according to the equation  
 

xij j i= + +32 α β  

then the data may look like: 
 
   

 Group 1 Group 2 Group 3 
   

 Treatment A 32 + 2 - 4 = 30 32 + 2 + 1 = 35 32 + 2 + 3 = 37 
 Treatment B 2 - 2 - 4 = 26 32 - 2 + 1 = 31 32 - 2 + 3 = 33 
   

 
 In this case, the six subgroups yield means differing across the different cells of the 
table. However, the effect of a combination, x Xij − , associated with cell ij is exactly equal 
to the effect associated with its row, βi ,  plus the effect associated with its column, α j . In 

this scenario, we say the effect is additive.  
 
 Now, we will consider the case where the effect is not additive but interactive 
(interaction effect):  
 
   

 Group 1 Group 2 Group 3 
   

 Treatment A 32 + 2 - 4 - 2 = 28 32 + 2 + 1 + 6 = 41 32 + 2 + 3 - 4 = 33 
 Treatment B 2 - 2 - 4 + 2 = 28 32 - 2 + 1 - 6 = 25 32 - 2 + 3 + 4 = 37 
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 The effect associated with a cell is now no longer the simple sum of the effects of 
its row and its column, an indication that interaction effects are present. Notice that 
columns are different in different ways within rows, and vice versa, when interaction 
is present. Naturally, for any real data, there will be random error as well. This implies that 
the problem is now threefold: we must find out (1) if there are effects of the treatments 
represented by rows, (2) if there are effects associated with columns and (3) if there are 
effects which are attributable neither to rows (irrespective of columns) nor columns 
(irrespective of rows) but rather to interaction. 
 
 A general set of observed value for the two-variable classification problem can be 
formatted as follows: 
 
 
   

   Treatment group  Mean 
 Block 1 2 3   . . .  g all groups 
   
 1 x11  x12 x13  . . .  x1g  x1.   
 2 x21  x22 x23  . . .  x2g  x2.  
 3 x31  x32 x33  . . .  x3g  x3.  
 . 
 . 
 . 
 n xn1  xn2 xn3  . . .  xng  xn.  
   
 Mean x.1 x.2  x.3   . . .  x g.  X   

 
 
 That is, we have g treatments groups and in each group, we have n subjects. So, each 

observation can be identified by xij , where i = 1, 2, 3, . . ., g  and j = 1, 2, 3, . . . , n. In 

other words, total number of observations is  
 
    N = ng 
 
 Obviously the total sum of squares is measured by: 
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   which is associated with N-1 df. 
 
 It can be shown that this sum squares can be partitioned into three sources, namely, 

between blocks, between treatments and residual errors, as follows:: 
 
 Between block: 
 

   SSB = ( )∑ −
=

n

i
i Xxg

1

2
.   with n-1 df 

 
 Between treatment groups: 
 

   SSTR = ( )∑ −
=

g

j
j Xxn

1

2
.  with g-1 df. 

 
 Residual error: 
 

   SSE = ( )∑ ∑ +−−
= =

g

i

n

j
jiij Xxxx

1 1

2
..  

           = SSTO - SSB - SSTR with (g-1)(n-1) df 
 
 These information can be tabulated in an ANOVA table as follows: 
 
   
 Source DF Sum of  
    squares 
   

 Between groups g - 1 ( )∑ −
=

g

j
j Xxn

1

2
.  

 Between blocks n - 1 ( )∑ −
=

n

i
i Xxg

1

2
.  
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 Example 3: The following table shows how the data from a randomised block study 

would be arranged for analysis. The notation in the row and column headed means 
speaks for itself. The standard deviation are presented in the last row of the table for 
two reasons: one is to bring to the reader's attention the importance of the assumption 
of equal variances for a fully informative analysis. 

 
 Clotting time of plasma (in minutes) for 4 treatments compared in a randomised 

clinical trial. 
   

   Treatment group  Mean 
 Subject 1 2 3    4 all groups 
   

 1 8.4 9.4 9.8 12.2 9.95 
 2 12.8 15.2 12.9 14.4 13.825 
 3 9.6 9.1 11.2 9.8 9.925 
 4 9.8 8.8 9.9 12.0 10.125 
 5 8.4 8.2 8.5 8.5 8.40 
 6 8.6 9.9 9.8 10.9 9.8 
 7 8.9 9.0 9.2 10.4 9.375 
 8 7.9 8.1 8.2 10.0 8.55 
   

 Mean 9.3 9.7125 9.9375 11.025 9.9938 
 SD 1.55 2.294 1.514 1.815 
 
 The analysis will begin with a calculation of total sum of squares: 
 
   SSTO  = ( ) ( ) ( )222 9938.910...9938.98.129938.94.8 −++−+−  

    = 105.7788 
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 Between treatment SS: 
 
   SSTR = ( ) ( )[ ]22 9938.9025.11...9938.93.98 −++−  

    = 13.0163 
 
 Between subjects SS: 
 
   SSB = ( ) ( )[ ]22 9938.955.8...9938.995.94 −++−  

    = 78.9888 
 And residual SS: 
 
   SSE = 105.7788 - 13.0163 - 78.9888 
    = 13.7737 
 
 And the ANOVA table can be setup fully as follows: 
 
   
 Source DF Sum of  Mean of F-test 
   squares square 
   
 Between treatments 3 13.0163 4.3388 6.62 
 Between subjects 7 78.9888 11.2841  
 Residuals 21 13.7737 0.6559 
 Total 31 105.7788 
   
 
 Since the F ratio (6.62) exceeds F(3, 21, 0.05) = 3.07, we conclude that statistically 

significant differences exist among the treatment means at the 5% level. Multiple 
comparison may be made by using any of the criteria presented in the earlier section. 

 

 Let c1, c2, . . . , cg  denote a set of constants with condition cj =∑ 0, the contrast 
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    C c xj j= ∑ .  

 
 can be tested by the Scheffe's criterion as  
 

    L C n
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g
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 If L > ( ) ( )( ) α,11,11 −−−− nggFg  then the difference would be declared to be 

significant. 
 
 On the other hand, one can use the Bonferroni's criterion which would lead to 

judgement of significance if  
 
    |L|  > 

( )( )
k

gng
t

2
,11,1 α

−−−
 

 
 where k is the number of prescribed comparisons. 
 
 All pairwise comparisons (Tukey's, Scheffe's, Duncan's, LSD etc) can be proceeded 

as described in previous sections. 
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V. EXERCISES 
 
1. What are the differences between sum of squares, mean square, variance and 

variation? 
 
2. In a multicentre clinical trial which compared the efficacy of two drugs A and B. The 

trial was carried in 4 different countries. Patients were classified by sex (male or 
female) and within each sex patients were stratified into 4 age groups. In other words, 
there are 32 different comparisons the efficacy of treatments A and B. Assuming that 
if the p value for each comparison is less than 0.05, we declare a statistical 
significance. If there was actually no difference between the treatments, what is the 
probability that one subgroup comparison will reveal a statistical significance. How 
many comparisons which would be significant by chance alone would we expect 
from 32 comparisons? 

 
3 Consider the following experiment, which compared a new antiinflammatory drug N 

with aspirin and placebo. There were 11 subjects in each treatment group; giving a 
total of 33 subjects. Each subject was a definite rheumatoid arthritis patient. The 
response measured was an index of treatment effectiveness: 

 
 Patient No. Placebo Aspirin  N 
   
 1 1.0 1.3 2.1 
 2 -0.6 2.7 1.1 
 3 0.7 2.1 2.4 
 4 1.4 0.7 0.1 
 5 1.0 3.6 0.1 
 6 1.8 1.9 -0.1 
 7 0.2 3.9 -0.3 
 8 1.7 -0.8 0.8 
 9 0.4 2.2 -0.6 
 10 1.0 1.9 0.6 
 11 0.2 2.8 0.3 
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 Mean 0.80 2.03 0.59 
 SD 0.72 1.32 0.95 
 
 Perform an analysis of variance and test the hypothesis of equality of treatment 

means. Also, compare the multiple comparison procedures as described in part II in 
the note. 

 
4. The following data represents a randomly selected twin pairs (MZ and DZ) from our 

data base.  
 (a) Perform an analysis of variance to decompose the within and between pair 

variations fro MZ and DZ pairs separately. 
 (b) Perform an analysis of variance to test whether there was any effect of VDR 

genotypes (BSM). What would you do in terms of the paired twin data.  
 
 Pair Zygosity Bsm1   Bsm2    LS1     LS2 

        12     MZ      AA      AA     1.020    0.960 

        21     MZ      AA      AA     1.060    1.060 

        68     MZ      BB      BB     1.061    1.071 

        98     MZ      AB      AB     1.301    1.337 

        82     MZ      AA      AA     1.142    1.131 

        56     MZ      AA      AA     0.790    0.740 

        16     MZ      AB      AB     1.110    1.060 

        29     MZ      AB      AB     1.248    1.240 

        84     MZ      BB      BB     1.150    1.240 

       106     MZ      AA      AA     1.112    1.138 

        75     MZ      AB      AB     1.006    1.069 

        76     MZ      AB      AB     1.150    1.140 

        18     MZ      AB      AB     0.980    1.020 

        55     MZ      AA      AA     1.150    1.180 

        11     MZ      AB      AB     1.120    1.040 

       100     MZ      AB      AB     1.317    1.336 

        66     MZ      AB      AB     0.984    1.036 

        80     MZ      AA      AA     1.147    1.100 

         1     MZ      AB      AB     1.095    1.010 

        92     MZ      AA      AA     1.060    0.950 

        20     MZ      BB      BB     1.300    1.360 

        89     MZ      AA      AA     1.000    1.074 

        81     MZ      BB      BB     1.110    1.100 

        31     MZ      AB      AB     1.080    1.112 

        13     MZ      BB      BB     1.483    1.080 

        73     MZ      BB      BB     1.297    1.358 

        45     MZ      AB      AB     1.420    1.470 

        36     MZ      BB      BB     1.360    1.350 

        25     MZ      AB      AB     0.870    0.870 

        17     MZ      AB      AB     1.210    1.190 

         8     MZ      AB      AB     1.010    1.000 
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       107     DZ      AB      AB     1.370    1.120 

        54     DZ      AA      AA     1.370    1.200 

        46     DZ      AB      AB     1.350    1.330 

        34     DZ      AA      AA     1.030    1.100 

        70     DZ      BB      BB     1.240    1.040 

        50     DZ      AB      AB     1.130    1.250 

        71     DZ      AB      AB     1.190    1.210 

        58     DZ      AA      AA     1.080    1.119 

        42     DZ      BB      BB     1.420    1.390 

        52     DZ      AB      AB     1.160    1.280 

        41     DZ      AB      AB     1.110    1.160 

       132     DZ      AB      AB     1.209    1.254 

       124     DZ      AA      AA     1.098    1.112 

        57     DZ      AA      AA     0.830    1.110 

        26     DZ      BB      BB     1.100    1.140 

       101     DZ      AB      AB     1.060    1.280 

       112     DZ      AB      AB     1.237    1.325 

       110     DZ      BB      BB     1.210    1.213 

       113     DZ      BB      BB     1.297    1.324 

       121     DZ      AB      AB     1.272    1.234 

        97     DZ      BB      BB     1.200    1.312 

        83     DZ      AB      AB     1.231    1.254 

       109     DZ      AB      AB     1.331    1.391 

        64     DZ      AB      AB     1.290    1.240 

        67     DZ      AB      AB     1.220    1.360 

         3     DZ      AB      AB     1.140    1.140 

        51     DZ      AA      AA     1.330    1.300 

        62     DZ      AB      AB     1.100    1.360 

        32     DZ      AB      AB     1.050    1.000 

        44     DZ      BB      BB     1.130    1.140 

        15     DZ      AB      AB     1.240    1.260 

        78     DZ      BB      BB     1.213    1.300 

        86     DZ      BB      BB     1.290    1.040 

       105     DZ      BB      AB     1.310    1.080 

 
 (This data is in the Bone Network called "ANOVA Exercise". 
 
5. A study of the effect of VDR genotypes on bone loss among postmenopausal women 

in Switzerland (Lancet 1995) reported the following results: 
 
 VDR  Sample size % Bone loss Age 
 Genotype (N)  (Mean + SE) (mean + SD) 
   

 bb 26 0.7 + 0.7 70.5 + 6.2 
 Bb 37 1.0 + 0.7 73.8 + 7.0 
 BB 9 -2.3 + 1.0 72.7 + 9.5 
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 The authors wrote: "the rate of chance was significantly greater (p<0.05, ANOVA) in 
homozygote BB (0.7% per year) than in homozygote bb (-2.3% per year) or in 
heterozygote Bb subjects (1% per year)". 

 
 How would you assess the baseline compatibility? Perform an analysis of variance 

based on summary data and calculate necessary statistics (tests and confidence 
interval). Do you agree with the authors' conclusion? 

 
6. The computer output shown here gives the ANOVA for a taste-test experiment where 

each of 12 persons was asked to sample three new formulations of a widely used bulk 
laxative: 

 
 MTB> TWOWAY ANOVA OF "RATING" BY "FORM" AND "PERSON" 

 

 ANALYSIS OF VARIANCE RATING 

 SOURCE DF SS MS 

 FORM 2 767.4 383.7 

 PERSON 11 5301.2 481.9 

 ERROR 22 1532.6 69.7 

 TOTAL 35 7601.2 

 

 MTB> TABLE BY "FORM" 

 SUBC> MEANS OF "RATING" 

 ROW: FORM 

  RATING MEAN 

 1 57.667 

 2 46.917 

 3 49.250 

 ALL 51.278 

 
 (a) Describe the factors and sample sizes involved in this experiment. 
 (b) Calculate an F test to compare the formulation means. Give the p-value for your 

test. 
 (c) Calculate 95% CI for all pairwise differences in formulation means. Which 

formulation means appear to be different?  
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7. Consider an experiment to compare three treatments A, B and C. It was decided 6 
replicates were necessary, so 3 patients were selected from each of 6 age x sex 
groups, to form 6 blocks of 3. Treatments were then allocated randomly within each 
block. This is called a randomised complete block design. The response is as 
follows: 

 
   

    Treatment group 
       

 Age Sex Block A B C Mean 
   

 1 M 1 7.9 12.4 13.1 11.1 
 2 M 2 8.8 14.0 13.8 12.2 
 3 M 3 13.0 14.6 14.1 13.9 
 1 F 4 8.8 8.8 13.7 10.4 
 2 F 5 10.0 12.6 13.9 12.2 
 3 F 6 12.2 12.0 14.0 12.7 
   
   Mean 10.1 12.4 13.8 
 
 Perform an ANOVA and test whether there is any difference between treatment 

groups. Give 95% confidence interval of differences. 
 
 


